lunes, 5 de diciembre de 2011

Media aritmética:

 

 
En matemáticas y estadística, la media aritmética (también llamada promedio o simplemente media) de un conjunto finito de números es igual a la suma de todos sus valores dividida entre el número de sumandos. Cuando el conjunto es una muestra aleatoria recibe el nombre de media muestral siendo uno de los principales estadísticos muestrales.
Expresada de forma más intuitiva, podemos decir que la media (aritmética) es la cantidad total de la variable distribuida a partes iguales entre cada observación.
Por ejemplo, si en una habitación hay tres personas, la media de dinero que tienen en sus bolsillos sería el resultado de tomar todo el dinero de los tres y dividirlo a partes iguales entre cada uno de ellos. Es decir, la media es una forma de resumir la información de una distribución (dinero en el bolsillo) suponiendo que cada observación (persona) tuviera la misma cantidad de la variable.

Definición:

Dados los n números \{a_1, a_2, \ldots, a_n\}, la media aritmética se define simplemente como:
 \bar{x} = \frac{1}{n} \sum_{i=1}^{n} a_i = \frac{a_1+a_2+\cdots+a_n}{n}

Por ejemplo, la media aritmética de 8, 5 y -1 es igual a:

 \bar{x} = \frac{ 8 + 5 + \left ( -1 \right ) }{3} = 4
Se utiliza la letra X con una barra horizontal sobre el símbolo para representar la media de una muestra (\overline{X}), mientras que la letra µ (mu) se usa para la media aritmética de una población, es decir, el valor esperado de una variable.
En otras palabras, es la suma de n valores de la variable y luego dividido por n : donde n es el número de sumandos, o en el caso de estadísticas el número de datos.

Propiedades

  • La media aritmética de un conjunto de números positivos siempre es igual o superior a la media geométrica:
\sqrt[n]{x_1 x_2 \dots x_n} \le \frac{x_1+ \dots + x_n}{n}
  • La media aritmética está comprendida entre el valor máximo y el valor mínimo del conjunto de datos:
\min \{x_1, x_2, \dots x_n\} \le \frac{x_1+ \dots + x_n}{n}
\le \max \{x_1, x_2, \dots x_n\}

No hay comentarios:

Publicar un comentario