viernes, 16 de diciembre de 2011

Determinante

En matemáticas se define el determinante como una forma multilineal alternada de un cuerpo. Esta definición indica una serie de propiedades matemáticas y generaliza el concepto de determinante haciéndolo aplicable en numerosos campos. Sin embargo, el concepto de determinante o de volumen orientado fue introducido para estudiar el número de soluciones de los sistemas de ecuaciones lineales.

Ejercicios y problemas resueltos

1

Demostrar, sin desarrollar, que los siguientes determinantes valen cero:
determinante        determinante      

solución
Tiene dos líneas proporcionales.
solución

2
Sabiendo que |A|=5, calcula los otros determinantes.
determinantes
determinante               determinante

solución



 

3

Demostrar que los siguientes determinantes son múltiplos de 5 y 4 respectivamente, sin desarrollarlos
determinante       determinante
solución
solución

VIDEO EJEMPLO:


MULTIPLICACION DE MATRICES


Dos matrices A y B son multiplicables si el número de columnas de A coincide con el número de filas de B.
Mm x n x Mn x p = M m x p
El elemento cij de la matriz producto se obtiene multiplicando cada elemento de la fila i de la matriz A por cada elemento de la columna j de la matriz B y sumándolos.

Producto de matrices

Propiedades de la multiplicación de matrices

Asociativa:
A · (B · C) = (A · B) · C
Elemento neutro:
A · I = A
Donde I es la matriz identidad del mismo orden que la matriz A.
No es Conmutativa:
A · B ≠ B · A
Distributiva del producto respecto de la suma:
A · (B + C) = A · B + A · C
 ejemplo:
1. Dadas y

(a)Describir los vectores filas y los vectores columnas de y

(b)Hallar , ,

  Los vectores filas de son: y Los vectores columnas de son: y Los vectores filas de son: y Los vectores columnas de son: y
Xn
(b)Respuesta:


video ejemplo:

 

lunes, 5 de diciembre de 2011

Moda :

En estadística, la moda es el valor con una mayor frecuencia en una distribución de datos. Imagenmarcos1.JPG
Hablaremos de una distribución bimodal de los datos adquiridos en una columna cuando encontremos dos modas, es decir, dos datos que tengan la misma frecuencia absoluta máxima. Una distribución trimodal de los datos es en la que encontramos tres modas. Si todas las variables tienen la misma frecuencia diremos que no hay moda.
El intervalo modal es el de mayor frecuencia absoluta. Cuando tratamos con datos agrupados antes de definir la moda, se ha de definir el intervalo modal.
La moda, cuando los datos están agrupados, es un punto que divide al intervalo modal en dos partes de la forma p y c-p, siendo c la amplitud del intervalo, que verifiquen que: Imagenmarcos2.JPG
Siendo la frecuencia absoluta del intervalo modal las frecuencias absolutas de los intervalos anterior y posterior, respectivamente, al intervalo modal. Imagenmarcos3.JPG

Mediana :

En el ámbito de la estadística, la mediana, representa el valor de la variable de posición central en un conjunto de datos ordenados. De acuerdo con esta definición el conjunto de datos menores o iguales
 que la mediana representarán el 50% de los datos, y los que sean mayores que la mediana
representarán el otro 50% del total de datos de la muestra. La mediana coincide con el
percentil 50, con el segundo cuartil y con el quinto decil

Existen dos métodos para el cálculo de la mediana:
  1. Considerando los datos en forma individual, sin agruparlos.
  2. Utilizando los datos agrupados en intervalos de clase.
A continuación veamos cada una de ellas

 Datos sin agrupar

Sean x_1,x_2,x_3,\ldots,x_n los datos de una muestra ordenada en orden creciente y designando la mediana como Me, distinguimos dos casos:

a) Si n es impar, la mediana es el valor que ocupa la posición (n + 1) / 2 una vez que los datos han sido ordenados (en orden creciente o decreciente), porque éste es el valor central. Es decir: Me = x(n + 1) / 2.
Por ejemplo, si tenemos 5 datos, que ordenados son: x1 = 3, x2 = 6, x3 = 7, x4 = 8, x5 = 9 => El valor central es el tercero: x(5 + 1) / 2 = x3 = 7. Este valor, que es la mediana de ese conjunto de datos, deja dos datos por debajo (x1, x2) y otros dos por encima de él (x4, x5).

b) Si n es par, la mediana es la media aritmética de las dos observaciones centrales. Cuando n es par, los dos datos que están en el centro de la muestra ocupan las posiciones n / 2 y n / 2 + 1. Es decir: Me = (xn / 2 + (xn / 2 + 1)) / 2.
Por ejemplo, si tenemos 6 datos, que ordenados son: x1 = 3, x2 = 6, x3 = 7, x4 = 8, x5 = 9, x6 = 10 =>
Hay dos valores que están por debajo del x_{\frac {6} {2}} = x_3 = 7 y otros dos que quedan por encima
del siguiente dato x_{{\frac {6} {2}}+1} = x_4 = 8. Por tanto, la mediana de este grupo de datos es la media
aritmética de estos dos datos: M_e = \frac {x_3 + x_4}{2} = \frac {7 + 8} {2}=7,5.

Datos agrupados

Al tratar con datos agrupados, si  {{\frac {n} {2}}} coincide con el valor de una frecuencia acumulada,
el valor de la mediana coincidirá con la abscisa correspondiente. Si no coincide con
el valor de ninguna abcisa, se calcula a través de semejanza de triángulos
en el histograma o polígono de frecuencias acumuladas, utilizando la siguiente equivalencia:
Davicrege3.JPG
Dónde Ni y Ni − 1 son las frecuencias absolutas acumuladas tales que
N_{i-1} < {{\frac {n} {2}}} < N_{i}, ai − 1 y ai son los extremos, inferior y superior, del intervalo
donde se alcanza la mediana y Me = ai − 1 es la abscisa a calcular, la moda.
 Se observa que aiai − 1 es la amplitud de los intervalos seleccionados para el diagrama..

Media aritmética:

 

 
En matemáticas y estadística, la media aritmética (también llamada promedio o simplemente media) de un conjunto finito de números es igual a la suma de todos sus valores dividida entre el número de sumandos. Cuando el conjunto es una muestra aleatoria recibe el nombre de media muestral siendo uno de los principales estadísticos muestrales.
Expresada de forma más intuitiva, podemos decir que la media (aritmética) es la cantidad total de la variable distribuida a partes iguales entre cada observación.
Por ejemplo, si en una habitación hay tres personas, la media de dinero que tienen en sus bolsillos sería el resultado de tomar todo el dinero de los tres y dividirlo a partes iguales entre cada uno de ellos. Es decir, la media es una forma de resumir la información de una distribución (dinero en el bolsillo) suponiendo que cada observación (persona) tuviera la misma cantidad de la variable.

Definición:

Dados los n números \{a_1, a_2, \ldots, a_n\}, la media aritmética se define simplemente como:
 \bar{x} = \frac{1}{n} \sum_{i=1}^{n} a_i = \frac{a_1+a_2+\cdots+a_n}{n}

Por ejemplo, la media aritmética de 8, 5 y -1 es igual a:

 \bar{x} = \frac{ 8 + 5 + \left ( -1 \right ) }{3} = 4
Se utiliza la letra X con una barra horizontal sobre el símbolo para representar la media de una muestra (\overline{X}), mientras que la letra µ (mu) se usa para la media aritmética de una población, es decir, el valor esperado de una variable.
En otras palabras, es la suma de n valores de la variable y luego dividido por n : donde n es el número de sumandos, o en el caso de estadísticas el número de datos.

Propiedades

  • La media aritmética de un conjunto de números positivos siempre es igual o superior a la media geométrica:
\sqrt[n]{x_1 x_2 \dots x_n} \le \frac{x_1+ \dots + x_n}{n}
  • La media aritmética está comprendida entre el valor máximo y el valor mínimo del conjunto de datos:
\min \{x_1, x_2, \dots x_n\} \le \frac{x_1+ \dots + x_n}{n}
\le \max \{x_1, x_2, \dots x_n\}